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Abstract--Turbulent wavy flow models for intermediate and high Re are presented. The modelling is based 
on different mechanisms which control the various zones along the wave. It is shown that sufficient 
information may be available to generate a closed-form solution. Reasonably satisfactory agreement 
between the theoretical predictions and the experiments is obtained for a wide range of  film Re. 
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1. I N T R O D U C T I O N  

The wavy pattern in developed downward wavy film flow is characterized by the existence of highly 
disturbed lumps of liquid, travelling downstream over a thin substrate film at a velocity which is 
several times larger than the mean velocity of the substrate film. These rolling large waves are the 
cause of the substantial increase observed in transport rates of momentum heat and mass across 
wavy liquid films. 

The modelling of wavy flow has been traditionally tackled by solving the highly nonlinear 
equations of motion over the entire length of a single wave. The many attempts, which did start 
with a single solution strategy for the whole wave unit, could provide only partial information on 
the associated physical mechanisms and, in principle, none of these could lead to a complete 
closed-form solution. 

A different approach has been offered by Brauner & Moalem Maron (1983) and Moalem Maron 
et  al. (1985), whereby the wave is viewed as a composite of series of zones, each of which has its 
own characteristic mechanisms and a corresponding solution strategy. Thus, the equations of 
motion are solved for each zone and the solutions are matched at the junctions between the different 
sections of the wave. The model has been extended to account for cocurrent (Brauner et al. 1985) 
and countercurrent (Brauner et al. 1987b) interracial shear. However, these models are restricted 
to relatively low film Reynolds numbers where the entire flow field is laminar. 

As has been shown previously (Brauner & Moalem Maron 1983; Moalem Maron et al. 1985), 
the major part of the flow rate is carried by the rolling liquid lumps, while the thin substrate film, 
which separates the waves, carries only 10 -1 of the average flow rate. Based on this fact, 
intermittent turbulence may prevail in the flow field, whereby turbulence may first be initiated 
locally in the wave, even at relatively low average film Reynolds numbers (Re), and may extend 
further to the substrate film with increasing flow rate (Brauner & Moalem Maron 1988). 

A first step to account for local turbulence in the flow field has been presented recently (Brauner 
1987). Utilizing energy considerations, analytical expressions have been presented for the roll wave 
celerity and average film thickness in fully developed turbulent wavy film flow. It is the purpose 
of the present work to establish a comprehensive turbulent wave model, based on different physical 
mechanisms controlling the various zones along the waves, for intermediate Re, where turbulence 
may develop only at the wave core region and for fully turbulent wavy flow, where turbulence 
extends to the entire substrate film. 

2. THE PHYSICAL MODEL 

A schematic description of the physical phenomena associated with a typical large rolling wave, 
as viewed in a coordinate system moving with the wave velocity, is outlined in figure l(a). A roll 
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Figure 1. Schematic description of a wave in moving coordinates: (a) stagnation at B; (b) extremum 
(non-stagnation) at B. 

wave is visualized as a lump of liquid travelling over a slow-moving thin substrate film. In moving 
coordinates the substrate entering the wave resembles a fast-moving wall jet entering the region 
of slower-moving liquid, and a shear layer can be expected to develop as shown in the diagram. 
Away from the wall, in the wave core, a large mixing eddy is formed. Simultaneous measurements 
of the local and instantaneous film thickness and mass transfer rates (Brauner & Moalem Maron 
1982) or wall shear (Zabaras 1985) indicate that the near-wall region is characterized by a periodical 
process of distortion of the wall boundary-layer (BL) at the frontal region and its reestablishment 
at the wave back. In the moving coordinates system, which follows the wave motion, the solid wall 
is seen as drawn away from the liquid lump at the wave velocity, Vw. Thus, the BL is that which 
develops on continuous surface; it grows in the direction of the wall motion and terminates at point 
B, where the BL thickness becomes identical to the local film thickness hB. 

The above physical picture led Brauner & Moalem Maron (1983) to introduce the idea of a 
stagnation condition (in moving coordinates) at B. This idea has been recently explored analytically 
by Brauner et al. (1987c) to justify the existence of either stagnation or extremum conditions at 
the interface. It has been shown that the downstream interfacial velocity, vi, attains either the wave 
velocity at both the wave back and front [stagnation in moving coordinates at points B and F as 
sketched in figure l(a)] or it attains a maximum value at B with /)iB = (/)i)max < Vw,  followed by a 
minimum value at the front/)iF = (/)i)rain' The corresponding streamlines and velocity profiles u(y), 
viewed in moving coordinates, for these two possible situations are sketched in figures l(a,b). Note 
that u ( y ) = / ) ( y ) -  Vw. 

The presence of stagnation points is associated with a recirculating eddy (viewed in moving 
coordinates), highest downstream velocities at the peak region and a sharp change in velocities 
between the wave core and substrate ahead, which generates shear-layer conditions at the wave 
front [figure l(a)]. The existence of extremum points along the free interface, however, corresponds 
to gradual changes in velocities within the wave and relatively low downstream velocities at the 
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wave peak region (Brauner et al. 1987c). The latter is schematically outlined in figure l(b). A similar 
description of streamlines within the wave confinement (with no internal circulation) has been 
obtained numerically by Bach & Villadsen (1984) for low Re. 

Whether point B is an extremum point or a stagnation point, it represents the boundary between 
the two regions of the wave trail. The first region is that of the substrate film, where the velocity 
distribution may reasonably be described by similarity profiles (scaled with reference to the local 
film thickness h) and the interfacial velocity monotonically decreases with the decrease in the local 
film thickness towards its final constant value, hs. The second region is the wave back, which 
includes two subzones: the near-wall region where the velocity profiles are scaled relative to the 
local BL thickness, 6; and an outer region of near uniform velocity between 6 and h. 

The formulations of the continuity and momentum equations for the various wave zones for a 
fully turbulent or intermittent turbulent flow field are presented briefly below. The fully laminar 
model equations are listed in appendix A. The details of the derivations are given in Brauner (1988). 

2. I. Integral Continuity Relationships 

The integral continuity equations in a moving coordinates system applied at several specific 
locations along the wave read as follows: 

[al [bl [¢1 [dl 
h ( V  w - -  V )  = h p ( V  w - Vp)  = h B ( V  w - -  VB) = h s ( V  w - Vs)  = ~, [ l a - d ]  

where V is the local velocity averaged across the local film thickness h and y is an apparent constant 
discharge rate of the fluid. The subscripts p, B and s stand for the peak, the location of the B plane 
and the substrate, respectively. 

In a stationary coordinates system, the time average mass flow rate is equal to the mass feed 
rate, F, which yields (Brauner 1987): 

F 

~- = h dl [2] 

with 

v .  
= T = IF+ t. + l, + 1,. [3] 

Here F and 2 are the wave frequency and wavelength, respectively; IF, lw and Is are the lengths of 
the wave front, the wave back and the substrate film, respectively, and l~ is the substrate varying 
thickness region [see figures l(a,b)]. 

Since the slope of the wave is < 10%, even at its steepest location, the wave front and wave back 
shape are approximated by straight lines, and [2] is integrated to give a relation for the wave 
frequency in terms of the wave dimensions, whereby 

with 

l~ (hB-- h,) [5] 
lw (hp-hB)" 

2.2. Modelling the Shedding Rate, y 

As has been noted above, point B defines the boundary between the wave back and the substrate 
region. At this point the interfacial velocity either attains its maximum value, where 
ViB = (V~)max < Vw, or it attains the wave velocity with rib = Vw < (Vi)m~,. In previous works, (Brauner 
& Moalem Maron 1983; Moalem Maron et al. 1985; Brauner et al. 1987c) it has been elucidated 
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that the inertia terms at point B are practically negligible and thus, the local film thickness can 
be evaluated by equating the local body and viscous forces. The existence of  stagnation conditions 
at B provides an additional relationship in terms of the wave velocity, whereas in the case of 
extremum conditions at B, the solution proceeds in terms of  an initially unspecified parameter, 
Go= 1--Via/Vw. Thus, G0 represents the deviation of  the local interfacial velocity from the 
stagnation condition. 

For sufficiently high local Re, turbulence may prevail in the wave back region. The velocity 
profile at point B is then assumed to obey a power-law of velocity distribution (Schlichting 1968), 
whereby 

/y~il, 
--v = ( l - G o ) I v - |  • [6] 
Vw \h,,] 

The corresponding local average velocity and local wall shear at B are given by (Schlichting 1968) 

1 f~" n 
VB = ~ v dy = n + l  (1 - ~o)Vw [71 

and 
/ /  V "~ 2/(n + I) 

+ w . _  - +0> t81 
pV~ 

where S(n)= [l/C(n)] 2"/~"+~) and C(n) is a coefficient determined by the power n, used in [6]; 
C(n) = 8.74 for n = 7. 

It is to be noted that in spite of  the fact that a power-law velocity characterizes in a strict sense 
only fully developed turbulent flows in pipes, it has been shown to be a useful approximation in 
other cases. The advantage of  using such a profile is the possibility of  obtaining closed analytic 
expressions, which make the theory mathematically amenable, albeit slightly inaccurate. 

Equating the local body force with the local wall shear at point B, [8] yields an expression 
for hB: 

2.1,++,, ~ 0 =  (1 -- ~0) 2"/t"+31, hB0 = L g'"+~) v,~j ; [9] 

where hB0 is the corresponding local film thickness in the case where point B is a stagnation point 
(Go = o). 

The shedding rate is obtained by applying [ l a d ]  at point B, with VB and hB, defined by [7] and 
[9], which then yields: 

Y = ?of(~o), f(~o) = (n~o + 1)(1 - ~0)2"/t"+3); [10] 

and 

F S(n)'"+'>v2 ],/,.++1. ?o = V3w <"+''_ [111 

Again, 70 is the corresponding shedding rate in the case where point B is a stagnation point (G0 = 0). 
The shedding rate, ~,, increases with increasing G0, and with n = 7 it attains a maximum value for 
G0 = 1/3. As is shown below (section 2.5), the condition of maximum shedding rate determines the 
limit beyond which no physical solution exists for the wave pattern. 

2.3. The Wave Back Region 
The back of  the wave is designated as the region between the wave peak and plane B. At this 

region a wall BL is reestablished. Its growth is assumed to start under the wave peak and to 
terminate at plane B, where the local BL thickness becomes identical to the local film thickness. 
In the moving coordinates system, which follows the wave motion, the solid wall is seen as drawn 
away from the wave back, and, thus, the BL is that which develops on a continuous moving surface. 
Applying BL theory via the integral approach provides expressions for the length of  the wave back, 
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lw, and the variation of the wall shear at this region (based on the power-law velocity profile across 
the BL): 

2 3) F(Ao, V~ [121 lw = (n + 2)(n + Go) --~-, 

where 

F(Ao, Go)= { o[n(12(1 -- ~o) z"/¢"+G°-l)-- 2j+,) 2} [131 

and A0 = 6o/hBo denotes the residual (initial) BL thickness under the wave peak. 
The average wall shear stress at the wave back region, fw, is expressed in terms of a wall shear 

parameter, Kw, defined by 

[ h ~ _  A ] (  hB ~ 2/'~+', 
fL.  (n + 3) °_l ~Bo ,] Kw = fw = ~ Zw(A) d X  = ; [14] 

T~,. pghsLw J0  (n + I) F( h._B_B ~"+')/"+') A~.+3)/<.+,)" ] 
/ /  / ] L\hB0/ 

K,  is the ratio between the shear stress averaged over the wave back, L ,  = l,/hBo, and the local 
wall shear stress at plane B. As indicated in [14], the possible range of K,, is determined by the 
variation of the residual thickness of the BL, A 0. For A0-+0, K ,  attains its maximum value [for 
G0 = 0 and n = 7, Kw = (Kw)max = 1.25]. A lower bound for K,. results assuming the shear-layer 
formed at the front has almost no effect on the near-wall region, so that A 0 ~- h,/hBo under the peak 
of the wave. 

The expressions derived for lw and z. are utilized in a global momentum balance (in a moving 
coordinates system) performed over the wave back which yields a quadratic equation in hp/hn: 

A(hp'~2+\hB,] B ( ~ ) + C = O  [15a] 

A = I ,  

B = -  2 K w + l +  
(n + 2)(n + 3)f2(Go) 

(n + I)2F(Ao, Go)(1 - Go) 4n/(n+3) 

(n + 2)(n + 3)f2(~o) 
(n + I)2F(Ao, Go)(l - Go) 4~/¢"+3)" 

[15bl 

with 

C= _ 

2.4. The Wave Front Region 
An integral momentum balance on the wave front (in a coordinates system moving with the wave 

velocity) provides an equation for the length of the wave front in terms of the other wave variables: 
/ / .  \ 

I 

gh, hp 1+~-  pgh," 

Based on experimental observations of wall shear relaxation in the wave front, ~wr - 0 may be 
comfortably assumed (Moalem Maron et al. 1985). 

2.5. The Substrate Film Region 
The substrate is visualized as the region beyond plane B, where deceleration of the film takes 

place and a constant film thickness, hs, is established. 
It has been shown that the fraction of liquid flowing in the substrate (based on the laminar film) 

may range between 4-20% of the total rate (Brauner & Moalem 1983; Moalem Maron et al. 1985). 
Thus, the major part of the flow rate is carried downstream by the liquid lumps--the rolling large 
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waves. The transition to turbulence is controlled by the local instantaneous Re, which is expected 
to attain a transitional value first in the wave back region. Thus, intermittent turbulence may be 
initiated in the flow field even at relatively low overall (feed) Re, with turbulence prevailing in the 
wave back region, while the thin substrate film is laminar. However, at high liquid flow rates, 
turbulence may develop not only in the wave back region, where it is first initiated, but also in 
the wave trail region, and may further extend to the substrate film region. Therefore, appropriate 
modelling of  the substrate ought to be adopted in the integrated wave model. 

Laminate substrate-turbulent wave back, L - T  

For the laminar substrate film, the velocity distribution in the film is parabolic and the average 
local velocity, Vs, is given by 

I'~ 1 pg = 5  ~-- h~. [171 

Utilizing [la~i], [7], [9] and [17] results in a cubic equation for (h~/hB): 

ha,] (1 - ~o)S(n) 2('~+1)/~n+3} (1 - ~0)3V 3 hB (n -b 1) J = 0. [181 

As is indicated by [18], the solution obtained for (hJhB) is dependent on the wave velocity. 

Turbulent substrate-turbulent wave back, T - T  

In this case, the n th power turbulent velocity profile is assumed for the substrate film, with the 
local average velocity and wall shear stress given by 

n 
Vs = v i ~ -  [19] 

n + l  

and 
V ~n/(n+l) 

rws = S(n)pv~ \~v~, / " [20] 

In the constant substrate film region, gravity is balanced by the wall shear, and thus an expression 
for V s is derived: 

n V g~"+') 1 ':2" Vs = n + 1 [ _ S ( ~ ) v  2 hisS+3) " [21] 

Substituting [7], [9] and [21] into [la--d] yields an equation for (hJhb), which reads as follows: 

n ( 1 - ~ o )  f h s y  '~+')/2" h~ (n~o+ 1) 
(n + 1) \h-Ba,] ha F (n + 1--~ = 0. [221 

Note that the solution obtained for hJhB in this case is independent of the wave velocity. For 
instance, for n = 7 and ¢0 = 0, hs/hB = 0.165. For ~0 = 1/3, which corresponds to Vmax (by [10] and 
[11]), h~/ha = 1. Thus, the range of  ~0, which yields physical solution for h~, is limited to 
0 ~< ~0 ~< !/3. 

2.6. Prediction of  the Wave Velocity 

The wave frequency and wave velocity are continuously varying during the development of the 
wavy flow. At the inception region, high frequency, dense ripples with relatively low translational 
speed are initiated (Brauner & Moalem Maron 1982). 

With the acceleration process taking place downstream, overlapping occurs and the frequency 
decreases, while the wave velocity, wavelength and amplitude increase (Brauner & Moalem Maron 
1982; Webb & Hewitt 1975; Takahama & Kato 1980). Far downstream of the inception region, 
a fully developed wavy flow is established. The ultimate frequency and the corresponding wave 
velocity are inherent properties of  the fully developed wavy pattern. The approach towards the fully 
developed pattern depends on various operating conditions, such as liquid flow rate, surface 
inclination and the particular mode of the liquid feed distribution. 
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For a given set of operating conditions the wave velocity at the upstream inception region and 
the asymptotic wave velocity downstream may be regarded as lower and upper bounds for the 
probable wave velocity range. These are predicted as follows. 

Inception wave veloci ty-- lower bound 

The wave velocity of the high frequency, dense waves, at the wave inception region is evaluated 
by setting the length of the constant thickness ~ubstrate region identical to zero. Equation [3] then 
reads: 

Vwm,, = F(IF + lw + 10; ls = 0. [231 

As the total number of (unknown) wave variables is now reduced (Is = 0), incorporation of [23] 
in the model equations provides an evaluation of the inception wave velocity. 

Equilibrium wave veloci ty--upper bound 

The ultimate wave velocity in the fully developed wavy flow region, corresponds to an asymptotic 
equilibrium state, whereby the average dissipated energy in the liquid film during a wave period 
is balanced by the corresponding average work done by gravity (Brauner 1987). The equilibrium 
wave pattern is associated with a minimum value for the average film thickness//, which by [2] and 
[3] reads: 

Ifo. 1 ( ~ )  / / = ~  h d l = ~  + y  , [24] 

where, ~ is given in either [10] and [11] (turbulent model) or in [A.3] (laminar model, appendix A) 
as a function of the wave velocity and ~0. The conditions for which//attains a minimum value 
has been derived by Brauner & Moalem Maron (1983) for laminar wavy flow and by Brauner (1987) 
for turbulent wavy flow, assuming the stagnation condition at B, ~0 = 0. These conditions are 
rederived below for ~0 I> 0 (the corresponding laminar equations are given in appendix A). 

The shedding rate ~,, given in [I0] and [11] reads: 

where 

m + l  7 = Af(Co) Vw , [25] 

1 FS(n)("+')vq '/("+~) 2n 
A =  l - - 1 n + 1 L ~ ' ~  ] , m n+3~'  turbulent. [26] 

Since all the wave variables are related to the wave velocity (through the model equations), ~0 is 
assumed to be dependent on the wave celerity. An extremum value of//exists providing d///d V,, = 0. 
Substituting [25] and [26] into [24], this condition results in an algebraic equation for the 
equilibrium wave celerity, C: 

{[(n + l)(n 8n +3)] ("+3) F 48L~37(.+,) Re('-")ll ,/~(.+I) 
{ [ (n + i) o-3 ) 

-- C_f(Co)_ l + ~ C (I - Co)(l + nCo) dC3J [27] 

Here, Re is the feed Reynolds number ( -- 4F/#); C is the dimensionless wave celerity, C = V,/VN; 
and VN is the average Nusselt's velocity, VN = (l/48vgRe2) I/3. For any specified power-law used and 
¢o(C), [27] can be solved for C -- C,q. For instance, for n -- 7, S(n) = 0.0225 and Co -- const, [27] 
reads: 

Ceq = 14.93(1 - ~o)-V!:(1 + 7Co)-S/):Re - i/4. [28] 

Equation [28] for Co = 0 (stagnation at B) yields C~q = 14.93Re-1/4, as derived previously by Brauner 
(1987). 
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2. 7. Solution Procedure 

The relationships presented above for each of the wave regions include 13 unknowns: 
(IF, hp, V 0,  (lw, hB, VB), (tt, l,, hs, Vs) (V. ,  F, ~). 

A functional relationship G0 =f (C)  is to be prescribed (see below), which provides G0 in the limits 
where a physical solution exists. The mathematical formulations in sections 2.1-2.5 provide 12 
independent relationships given in: [16], [15a], [lb]; [12], [9], [7]; [5], [3], [22], [21]; and [4], [10]. For 
the intermittent turbulent flow field (laminar substrate-turbulent wave back, L-T [21] and [22] are 
replaced by [17] and [18], while the fully laminar wavy model is calculated by replacing [7], [9], [10], 
[12], [21] and [22] by the corresponding equations given in appendix A. Note that, for the turbulent 
regime, the 7th power-law is used [n = 7, S(n) = 0.0225]. 

Thus, selection of one of the variables is sufficient to determine the others. That degree of 
freedom is attributed to the wave velocity, which is convenient to determine experimentally, and 
thus, the applicability of the model is extended to quasi-steady wave structure in the developing 
region. 

The prediction of the wave velocity in section 2.6, in the wave inception region [23] or in the 
fully developed region [27] (or [A.9] in appendix A), provides an additional required relationship 
for the closed-form solution. 

3. RESULTS AND DISCUSSION 

The network of equations presented above represents a mathematical formulation of the physical 
mechanisms thought to take place in each of the wave zones. For a given set of operating 
conditions, all the wave variables are determined by the wave celerity, C = Vw/VN. The computa- 
tion also requires a prescription of the functional relation Go(C), which as yet is of an unknown 
nature. A parametric analysis is used below to show the impact of G0 on the wave variables, while 
comparison with the experimental data provides an insight into the possible applicability of the 
relation G0(C). 

As has been pointed out already, the observed wave velocity in the developing region is expected 
to be bounded by the wave velocity at the upstream inception region (lower bound, [23]) and the 
asymptotic equilibrium wave velocity downstream (upper bound, [27] or [A.9]). These predicted 
bounds are presented in figure 2 for a wide range of Re. Tap water physical properties have been 
used, and the results are compared with experimental data obtained by Chu (1973), Webb & Hewitt 
(1975) and Zabaras (1985). 

In the fully laminar wavy flow regime the predicted bounds on the wave celerity are both 
independent of Re. The equilibrium wave celerity [A.9] decreases with increasing G0 from its 
maximum value Ceq(~0 = 0)= 3.78. On the other hand, the inception wave celerity increases with 
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Figure 2. Predicted bounds  on wave celeri ty--comparison with experimental data. 
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G0 from its minimum value Ci(~ = 0)=  1.35. Thus, the possible range of the predicted wave 
celerities diminishes with increasing G0. For ~0-+0.5, which is the upper bound on the possible 
physical range of G0 in the laminar regime, Ceq--*3.0. This result is identical to those obtained in 
previous studies, which represent different theoretical approaches. For instance, stability analyses 
(assuming infinitesimal perturbations on the smooth laminar solution) and kinematic wave theory 
(Wallis 1969) both predict an upper limit of 3.0 for the wave celerity (Brauner et  al. 1987a). Thus, 
the limit of G0 = 0.5 may relate to a laminar rippled interface. 

In the case where turbulence prevails at the wave back, the model predicts that both the 
equilibrium and inception wave celerities decrease with increasing Re. Both may go below the value 
of C = 1.5, predicted by stability analyses of a laminar film for high Re (Brauner et  al. 1987a). 
As in the laminar case, the range between predicted bounds diminishes with increasing G0. In the 
limit of G0 = 1/3, which is the upper bound on the possible physical range of G0 in the turbulent 
wave model, C,q approaches the celerity obtained for kinematic waves in turbulent film flow, as 
derived in appendix B. 

Inspection of figure 2 indicates that the experimental data taken at finite downstream locations 
is reasonably confined between the bounds predicted with G0 = 0-0.2. Moreover, the turbulent 
model predictions are in reasonable agreement with the experiments already at Re ,~ 600-800, while 
the laminar model predictions are inadequate at Re > 1000. Thus, it can be speculated at this point 
that the transition to turbulent wavy flow, initiated by local turbulence at the wave back, takes 
place at Re > 600. 

The evaluation of the model with respect to experimental data for various other wave 
characteristics (such as wave amplitude and frequency, substrate thickness) obtained in the 
developing region, is proceeded by utilizing the corresponding experimental data of the wave 
velocity, rather than the predicted bounds. 

A comparison between the predicted and experimental average substrate thickness (Chu 1973), 
is presented in figures 3(a-d). The predicted substrate thickness is obtained by [18], [22] and [A.7], 
depending on whether laminar or turbulence prevail at the wave back and substrate regions. The 
values predicted through the laminar-laminar model (L-L), [A.7], are presented in figure 3(a); those 
which are obtained at the intermediate laminar-turbulent case (L-T), whereby the wave back is 
turbulent while the substrate film remains laminar, [18], are presented in figure 3(b); the fully 
turbulent model results (T-T), [22], are presented in figure 3(c). As is indicated in the figures, 
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increasing Go (non-stagnation condition), effects an increase in the predicted substrate thickness. 
Inspection of figure 3(a) reveals that the moderate increase in the measured substrate thickness with 
Re for Re < 1000 is well-predicted by the L-L model. For higher Re, the rather steep increase in 
the substrate thickness with Re is well-predicted either by the L-T model in the intermediate Re 
range or by the T-T model in the high Re range, both accounting for the role of turbulence at 
the wave back [figures 3(b,c)]. Still, it is difficult to judge whether turbulence has been extended 
to the substrate film, since the two solutions differ by < 20%. It is to be noted, however, that for 
sufficiently high Re, no physical solution is obtained for the L-T model. For instance, with 40 = 0 
the L-T model is limited to Re < 10,000, and the limit decreases with increasing G0; Remax -~ 4000 
for 40 = 0.2. This implies that in the high Re range, turbulence in the stagnation region extends 
to the substrate region and only fully turbulent wavy situations may exist. The three models are 
combined in figure 3(d), where transitions from L-L to L-T and from L-T to T-T are suggested 
in view of the data. As is shown in figure 3(d), the value of 40 --- 0.1 reasonably predicts the substrate 
thickness for a wide range of Re [based also on recent findings in the laminar regime (Brauner et 
al. 1987b)]. 

The predicted substrate Reynolds number, Res = 4hs V Jr,  is presented in figure 4. Consistent with 
the physical model, the Res is about 5-20% of Re as the major part of the feed rate is carried 
downstream by the wave lumps. Indeed, for Re < 1000, as suggested in figure 2, Re~ < 100, by figure 
4, and thus the L-L model is applicable. For Re > 1000, the Re, predicted by the L-T model sharply 
increases with increasing Re, approaching the values predicted by the T-T model. For instance, 
Re > 6000 corresponds to Res > 1000 according to both the L-T and T-T models. Hence, the 
application of the fully turbulent wavy model in this region is justified. 

Figure 5 compares the calculated values of the wave amplitude with experimental data obtained 
by Chu (1973) and Zabaras (1985). The experimental data are shown along with the theoretical 
curve of the smooth Nusselt film thickness, hN. It seems that Chu's data at the lowest laminar flow 
rates are in error, since hp is expected to exceed hs. The theoretical curves correspond to a value 
of A0 = 0 and thus K, = (K,)max (by [14] or [A.6]) and hp = (hp)m~. Note that, in this case the 
solution for the wave height, hp, is unaffected by the substrate thickness value, and the L-T and 
T-T models yield identical values for hp. As is shown in figure 5, again the measured values are 
reasonably predicted by the laminar wave model for Re < 1000 (40 = 0-0.2), while for Re > 1000 
the increase in the wave height with Re is well-predicted by the turbulent wave models. The 
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Figure 5. Wave  peak height-- -comparison of  theory with experimental  data. 

predicted values decrease with increasing ~0, and the value of Go I> 0.2 already underpredicts the 
observed values. The increase in hp with higher velocities in the peak region, on the one hand, and 
the decrease of h~ with reduced velocities at the substrate, on the other, with decreasing G0, 
represents, in fact, the process of roll wave development from an initially rippled interface. 
Variability of ~0 between successive waves may account for the observed random nature of the wave 
structure. 

The effect of A0 on the predicted wave height is explored in figure 6, where predicted values for 
hp for 0 ~< A0 ~< A0~,~ = h~/hBo and ~0 = 0.1 are compared with the experimental data. The corre- 
sponding value for K, is given by [14] or [A.6]. As is shown in the figure, increasing A0 results in 
a smaller wave height both in the laminar and turbulent models. The predicted values through the 
L-T and T-T models with A0m,, are almost identical. Again, the value of G0 ~- 0.1 with 0 ~< 60 ~< h~ 
reasonably predicts the wave height over the whole range of Re. 

A comparison between the predicted wave frequency and the experimental data is given in 
figure 7. The theoretical values are in reasonable agreement with the trends of the experimental 
data. It is to be noted that experimental wave data obtained for short flow surfaces exhibits higher 
wave frequencies, which corresponds to underdeveloped waves. In general, the turbulent model 
predicts higher frequencies in the high Re range. 
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In view of the reasonable agreement shown so far between experimental and theoretical results 
with ~0 - 0. l, it is suggested herein that the interfacia! condition at point B is close to stagnation 
over a wide range of Re. However, the applicability of G0 - 0.1 does not necessarily indicate that 
the flow pattern within the wave confinement corresponds to the non-stagnation condition 
[figure l(b)]. One may assume that stagnation at B exists, while introducing a non-zero value for 
~0 compensates for the neglect of inertia forces at B. As has been noted by Brauner et el. (1987c), 
the existence of the small bow waves ahead of the large rolling wave, may indicate that the wave 
pattern corresponds to stagnation conditions since the appearance of a bow wave train evolves from 
a sharp change in velocities between the substrate film and the wave core [figure 1 (a)]. Thus, it is 
also likely that G0 ~= 0 is to be considered as a way to account for the effects of inertia around the 
stagnation area. In fact, recent numerical simulations on the flow pattern inside a rolling wave 
(Moalem Maron & Hewitt 1988; Moalem Maron et el., 1989; Wasden & Dukler 1988) have verified 
the existence of a recirculating region and the associated stagnation points at the front and rear 
of the wave [as sketched in figure l(a)]. 

The discussion proceeds at this point, speculating on the required functional relation for ~0. It 
is expected that ~0 relates to the various wave characteristics and to the flow regime. However, since 
the wave characteristics are determined by the wave velocity, it turns out that G0 = f (C) .  The 
simplest functional relation that can be assumed is a linear one, whereby ~0 = aC + b. The 
parameters a and b are chosen to yield the best agreement with the data. Figure 8(a) presents the 
equilibrium wave celerity (upper bound) predicted with G0 = 0.05C, [27] or [A.9]. The corresponding 
values which result for G0 are presented in figure 8(b). Reasonable agreement between the theoretical 
predictions (via the turbulent wave model) and the experiments is observed for the wave celerity 
for Re > 1000. Also the predicted values of ~0 are in reasonable agreement with the values used 
for the demonstrations in figures 3-7. Incooperation of G0 = 0.05C in the laminar wave model [A.9], 
predicts a value of C = 2.86 and a corresponding value of G0 = 0.145, both independent of Re. 

Although the above results are in the range of the experimental data, a more sophisticated 
relation for ~0 = f ( C ,  Re), is probably required in order to predict the variation of the wave celerity 
with Re. Moreover, at low Re, G0 may also depend on the capillary number, Ca =/~Vw/~ (Brauner 
1987). 

4. SUMMARY AND C O N C L U D I N G  REMARKS 

Turbulent wavy flow models for intermediate and high Re are presented. The analytical 
development considers both stagnation or non-stagnation conditions at the wave back interface. 

Comparison with experiments suggests that the wavy flow field is laminar up to Re - 1000. At 



T U  R B U L E N T  W A V Y  F L O W  M O D E L S  517 

0.2  

o 

| 
o 0.1 

4 
| 

O 

o 
I )  

(b) 

Lamlnor 

T u r b u L e n t  

2 m 

I - 

(a) 
T h e o r e t i c a l  

Exp .  

e 
Laminar 

F..O - 0 . 0 5  C 

• Chu (1973) 
• Webb a Hewltt ( t975) 
• Zabarac (1985) 

& u  

• . ~ A  Tu rbuLen t .  

0 | I I I I I I I [ I I I i I i I I I 

1 0  2 1 0  3 1 0  4 

FILm ReynoLds number,  Re 

Figure 8. Equilibrium wave celerity---effect of the variable G0. 

intermediate Re (1000 < Re < 4000) turbulence is initiated in the wave core region, while the 
substrate film remains laminar. In this region, intermittent turbulence is thus expected in the flow 
field. For higher Re, turbulence extends to the wave trail and substrate film, resulting in a fully 
turbulent way flow field. 

The results point out that the condition in the wave back for a developed wave pattern is close 
to stagnation over a wide range of Re. The deviation from the stagnation condition obtained in 
the turbulent model is in the range of the expected velocity fluctuations in the flow field. The 
recirculating eddy (visualized in the wave core, in moving coordinates) may thus be considered as 
part of the turbulent field. Its main role lies in triggering the initiation of turbulence. 
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APPENDIX A 

Model Equations for Fully Laminar Wavy Film Flow 

The shedding rate, 

Following the derivation outlined in section 2.2, the corresponding equations obtained for 
laminar regime at B (which replace [7], [9] and [10]) are: 

VB 2 
~ww = 3  (1 - G0), [A.1] 

2#V~ i/2 
hB = ( - - - ~ ) ( 1  -- ~0) 1/2 [A.2] 

and 
v .  r \(2#Vw)~/2(l _ ~0)~/2( l + 2G0) = )'0f(G0), [A.3] )' = - ~ - \  pg / 

with Y(~0 = 0.5)= 7,,,~ in the laminar case. 

The wave back region 
The length of the wave back and the corresponding wall shear stress, derived based on laminar 

BL recovery (Brauner et al. 1987b), are given by 

Lw = I. = F(ao,~o) V~ 
hB0 ghao' 

where 

[ 3  17 (1--~o)][1--~o][1 
F(Ao, ~o)= "100 3150 

[A.4] 

+ ~-~ (5 + 4~0)(1 - ~0)ln 6 - 5 A 0 : 1  
(I - ~o)J 

[A.5] 
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and 

'3 ][ 
f ~  = h_~ Lw ~ 6  + 7 - ~  (1 - '0) 1 (1 ),/i [1 - 'o] 

hso 
I[~ 0 98 ] [ Ao 3 ] l 

+ 6 I I~-O25 ( I  - Co) ( I  - ,o) I ( I  - ,0) 3/2 I I . 340  
F .l (1 '°)~L1 (1 - , o )~ / : j  

1 

108 + ~-~ (~ ) ' / 2 (1 -  C o ) [ ~ - 2  ( 1 -  ,0)]In [21.95 [1"095(1 - 'o) t /2-  Ao]]'[ 
[1.095(I ,o)  '/2 + Ao]_]J" 
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[A.6] 

F o r ' o  = 0 and Ao = 0 K. = (Kw)m~x = 1.92. Note that in laminar wave modelling [A.4] and [A.6] 
replace [12]-[14]. Also, in [15b] C = -2/9f2(,o)F-I(Ao, ,o)(1 - ,o) -~ and B = 1 - 2Kw - C. 

The substrate film region, L -L  

hs,I 2 (1 - Co) ~ - 1 + 2 (1 - '0-----) = 0. [A.7] 

Equation [A.7] is the substitute for [40], derived for fully turbulent way flow. The solution for 
h,/hB is independent of the wave velocity. For instance, for Co = 0 h,/hB = 0.366, and by [A.2] 
h, = 0.52(#Vw/pg) I/2. F o r ' o  = 0.5, which corresponds to maximum shedding rate, [A.7] yields 
h,/hB = 1. Thus, the physical range for '0 in the fully laminar case is 0 ~< 'o ~< 0.5. 

Prediction of the equilibrium velocity--upper bound 

In the case where the laminar regime prevails at the wave back, f( 'o) ,  A and m (defined in [25]) 
are obtained by [A.3]: 

l ( 2 v )  '/2 1 [A.8] 
f(Co) = (1 - Co)1/2(1 + 2,0); A = ~ - -  ; m = ~. 

Following the derivations outlined in section 2.6, the equilibrium wave celerity in the laminar 
case is given by 

)2/3 
3"78=(1-'°)'/3C{[1+3C((1-(1-2'°',o)(1 + 2,o).]'/d-d--~l(l + 2C°) ~ ' [A.9] 

For a prescribed ,o(C), [A.9] is solved for C = C~. For instance, 'o = const, yields 

C~ = 3.78(1 - C0)-I/3(1 + 2'o) -2/3 [A.10] 

which f o r ' o  = 0 yields the result Ccq = 3.78, previously obtained by Brauner & Moalem Maron 
(1983) and Brauner (1987). 

APPENDIX B 

Kinematic Wave Celerity in Turbulent Film 
Kinematic waves are quasi-steady-state phenomena. In the particular case of film flow, where 

the downflow rate is a function of the local film thickness, the kinematic wave velocity describes 
the propagation of upstream changes in film thickness. The velocity of kinematic waves, Vwk, is 
given by Wallis (1969): 

Vwk = Oq 0 ( ~ )  0-~= a-my- [B.I] 

In a smooth laminar film flow, where h N = (3v/gr) '/3, [B.1] yields Ck = Vw/VN = 3.0. For smooth 
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turbulent film flow, the relation between the flow rate and film thickness, ht, is given by (Brauner 
1987): 

h, = (n + l y"/~("+" 4r  
(_~--),13 \ - ~ n  ) S(n)'/3ReZ~/3("+°;Re= - .# lB.2] 

The corresponding kinematic wave velocity, in a turbulent falling film is obtained by substituting 
[B.2] into [B.1], which yields: 

V,,k 3 ( n + l )  
- , [ B . 3 I  

Vt 2 n 

where V, is the average velocity of the smooth turbulent film, given by 

(n )  ,__1.+, [B.4] 
v,= E-~ (LS(,,)J v~J " 

The dimensionless kinematic celerity, defined with respect to Nusselt's average film velocity, 
IN( = F /phN), is given by 

Vwk _ 3a/3S'/3(n) ( I  l'~(n+3)/3(n+l) 
Ck = VN -- 2(.+5)/3(.+i ) ~,- + ~)  Re (l-")/3(')+l) [B.5] 

For n = 7, S ( n ) =  0.0225, [B.3] and [B.5] read: 

Vwk _ 12 
v, 7 

and 

Ck = 1 1 . 5 R e  -t/4 [B .6]  

Equation [B.6] is identical to [28] with G0= 1/3. Thus, in the limit ~0~1/3 the equilibrium wave 
celerity predicted by the turbulent wave model approaches the value derived here for the kinematic 
wave celerity. 


